THREE NEWLY RECORDED GENERA AND SPECIES OF GOBIID FISHES (TELEOSTEI: GOBIIDAE) FROM THE DONGSHA ATOLL (PRATAS ISLANDS), SOUTH CHINA SEA

Shao-Liang Hsu¹,², Ta-Kang Liu¹, Kwang-Tsao Shao³, Kuan-Te Chen⁴, and I-Shiung Chen³

Key words: Gobiidae, new records, fish taxonomy, fish fauna, Dongsha Atoll, Taiwan.

ABSTRACT

Three newly recorded gobiid genera of coral-reef gobies have been collected and examined by scuba diving in the Dongsha Atoll, also known as the Pratas Islands, South China Sea. They are Feia Smith, 1959; Sueviota Winterbottom and Hoese, 1988; and Trimmatom Winterbottom and Emery, 1981. These three genera were formerly unrecorded in the Dongsha Atoll and all Taiwanese waters before this paper. One representing species was found for each gobiid genus. The diagnosis for these three newly recorded species and genera will be provided in this paper.

I. INTRODUCTION

The generally small body-sized gobiid fishes in Family Gobiidae comprise the most diverse group among marine teleost fishes (Miller [7]). Among them, the tropical and subtropical coral-reef associated gobies are the most diverse group of the species component of gobioid fishes.

In order to investigate the species diversity of gobioid fishes in the South China Sea, our research team has surveyed the fish fauna during the 2011 marine biodiversity expedition to the Dongsha Atoll, also known as the Pratas Islands, especially in the northern and eastern outside slopes of the great lagoon of Dongsha Atoll.

More recently, Chen et al. [4] have published a colored fish ecology guide-book of the Dongsha Atoll, including underwater visual census data of fishes by scuba diving. In their fish checklist there were 24 genera and 74 species of gobiid fishes, but some of them still lack specimen evidence. In addition, we found three newly recorded genera and species of gobioid fishes that have never been reported in the Atoll and all Taiwanese waters.

The aim of this paper is to document these three newly recorded genera and species of gobiid fishes from the Dongsha Atoll. They are Feia Smith, 1959 [13]; Sueviota Winterbottom and Hoese, 1988 [23]; and Trimmatom Winterbottom and Emery, 1981 [22]. Fish photos are also provided in this paper.

II. MATERIALS AND METHODS

All specimens of the newly recorded species were collected by hand-net during scuba diving. All counts and measurements were made from specimens stored in 70% ethanol after 10% formalin preservation. Morphometric methods follow Miller [7] and meristic methods follow Akihito et al. [1], Chen and Shao [2], Chen et al. [3], and Suzuki et al. [15]. Terminology of cephalic sensory canals and free neuromast organs (sensory papillae) follow Wongrat and Miller [24], based on Sanzo [11]. All fish specimens are deposited at the Pisces collection of National Taiwan Ocean University (NTOUP), Keelung.

Abbreviations: A, anal fin; C, caudal fin; D1 and D2, 1st and 2nd dorsal fins respectively; LR, longitudinal scale rows; P, pectoral fin; PreD, predorsal scales; TR, transverse scale rows; V, pelvic fin. All fish lengths are standard length (SL).
III. TAXONOMY

Family GOBIIDAE

Feia Smith, 1959

Type species: *Feia nympha* Smith, 1959: 206 [13]

Diagnostic characters of genus: (1) five branchiostegal rays; (2) fin rays: D1 VI, D2 I/7-10, A I/7-9, P 14-18; (3) squamation: LR 18-27 (scales only on caudal peduncle varied to covered all lateral trunk); (4) gill-opening restricted, extending only about vertical line at posterior 2/3 region of opercle; and (5) head lateral-line system: no canal pore to reduced canal pattern; typically reduced, longitudinal papillae pattern.

Distribution: Indo-West Pacific.

Remarks: There are 4 nominal, valid species in the Indo-West Pacific including: the type species *Feia nympha* Smith, 1959 [13] as well as 3 other species: *Feia nota* Gill and Mooi, 1999 [5]; *Feia ranta* Winterbottom, 2003 [20]; and *Feia dabra* Winterbottom, 2005 [21]. The species of genus can exist from 2 m to 25 m water depth of ecological habitats of coral-reef debris, holes and sandy bottom [5, 13, 20, 21].

Feia nympha Smith, 1959

Material examined: NTOUP-2011-06-108, 14.3 mm SL, coll. K.T. Chen et al., June 20, 2011, GPS 20° 43' 52.93" N 116°42' 24.01" E, 15-20 m depth, northwestern region of lagoon, Dongsha Atoll (Pratas Islands), South China Sea, Taiwan.

Diagnosis. This species can be well distinguished from other congeners by the following unique combination of features:

(1) **Fin rays:** D1 VI; D2 I/9; A I/8; P 14; V I/5. D1 without filamentous rays.

(2) **Squamation:** LR 20; PrED 0. Scales extending anteriorly to middle of body. Head, predorsal region and anterior part of trunk naked.

(3) **Gill-opening:** restricted, extending only to vertical line at posterior 2/3 region of opercle.

(4) **Body proportion:** all morphometric data shown in Table 1.

(5) **Head lateral-line system:** Head canals: No head canal pores. **Sensory papillae:** Overall infraorbital papillae pattern. Rows b and d with densely set papillae. Row f as long longitudinal papilla row.

(6) **Colouration:** Body generally creamy yellow, with many tiny irregular brown spots. Dorsum with several brown cross-bars. Caudal fin base with a larger brown spot. Dorsal half of head with tiny rows of brown spots, ventral half of head yellowish. Second dorsal fin with many oblique brown spots. Pectoral fin base yellowish. Caudal fin translucent with many tiny brown spots.

Distribution: Indo-West Pacific, including the Red Sea. This species was first found in Dongsha Atoll (Pratas Islands), South China Sea. However, it has not yet been found in Taiwanese waters.

Sueviota Winterbottom and Hoese, 1988

Type species: *Sueviota lachneri* Winterbottom and Hoese, 1988 [23]

Diagnostic characters of genus: (1) five branchiostegal rays; (2) fin rays: D1 VI, D2 I/8-10, A I/7-9, P 16-19; (3) squamation: LR 24–27 (scales covered all lateral trunk), predorsal region entirely naked; (4) gill-opening moderate, extending ventrally to about vertical line at midline of opercle; and (5) head lateral-line system: no canal pore to reduced canal pattern with presence of both anterior and posterior oculoscapular canals, but lacking preopercular canals; typically brief and reduced, longitudinal papillae pattern.

Distribution: Indo-West Pacific.

Remarks: There are 4 nominal, valid species in the Indo-West Pacific including: the type species *Sueviota lachneri* Winterbottom and Hoese, 1988 [23] as well as 3 other species: *Sueviota aprica* Winterbottom and Hoese, 1988 [23], *Sueviota atrinasa* Winterbottom and Hoese, 1988 [23] as well as *Sueviota larsonae* Winterbottom and Hoese, 1988 [23]. The most species of genus can exist from 8 m to 48 m water depth of ecological habitats of coral-reef caves and holes except the deeper species, *S. larsonae* found from 40 m up to 82 m depth [23]. Sunobe and Shinomiyia [14] have ever documented the reproduction behavior of *S. lachneri* as “the entire reproductive sequence consisted of nest preparation by a male, courtship behaviors, nest entry by a female, spawning, and paternal care until the hatching of eggs”.

Sueviota lachneri Winterbottom and Hoese, 1988

Sueviota lachneri, Nakabo, 2000: 1184 [8]; Akihito et al. in

Material examined:
NTOU-P-2011-07-222, 3 specimens, 13.6-16.2 mm SL, coll. I-S. Chen et al., July 7, 2011, GPS 20°38'30.21" N 116°54'47.42" E, 10-15 m depth, eastern outside slope of great lagoon, Dongsha Atoll (Pratas Islands), South China Sea, Taiwan.

Diagnosis.
This species can be well distinguished from other congeners by the following unique combination of features:

1. Fin rays: D1 VI; D2 I/9; A I/8; P 16; V I/5. Rear tips of D2 and A do not extend to procurrent rays of C.
2. Squamation: LR 25-26; TR 6; PreD 0.
3. Gill-opening: Moderate, extending ventrally to vertical line at midline of opercle.
4. Body proportion: All morphometric data shown in Table 1.
5. Head lateral-line system: Head canals: Anterior oculoscapular canal present with singular pore λ and κ, terminating at pore α but lacking pore β. Posterior oculoscapular canal with two terminal pores γ and ε. No preopercular canal. Sensory papillae: Rather brief infraorbital longitudinal papilla pattern. Both longitudinal papilla rows a and b with 2-4 papillae.

Distribution:
Indo-West Pacific. This species was first found in Dongsha Atoll (Pratas Islands), South China Sea.

Trimmatom Winterbottom and Emery, 1981

Type species: Trimmatom nanus Winterbottom and Emery, 1981 [22]

Diagnostic characters of genus:
(1) five branchiostegal rays; (2) fin rays: D1 VI, D2 1/8-12, A 1/7-11, P 15-19; (3) LR 0-27 (body no scales varied to body scales covered all lateral trunk), predorsal region entirely naked; (4) gill-opening rather wide, extending ventrally forward about vertical line slightly beyond preopercle; and (5) head lateral-line system: no any head canal and pore; typically brief and reduced, longitudinal papillae pattern.

Distribution: Indo-West Pacific.
Remarks: There are 7 nominal, valid species in the Indo-West Pacific including: the type species Trimmatom nanus Winterbottom and Emery, 1981 [22] as well as 6 other species:

Trimmatom nanus Winterbottom, 1989 [16], Trimmatom eviotops (Schultz, 1943) [12], Trimmatom officius Winterbottom and Emery, 1981 [22], Trimmatom pharus Winterbottom, 2001 [18], Trimmatom sagma Winterbottom, 1989 [16], and Trimmatom zapotes Winterbottom, 1989 [16]. The species member of genus (the type species) comprises a smallest coral-reef benthic fish in the World [22]. The species of genus mostly exist from 3 m to 50 m water depth of ecological habitats of coral-reef caves and holes [16, 18, 22].

Trimmatom nanus Winterbottom and Emery, 1981

Material examined:
NTOU-P-2011-07-203, 4 specimens, 7.1-8.7 mm SL, coll. I-S. Chen et al., July 7, 2011, GPS 20°38'30.21" N 116°54'47.42" E, 12-15 m depth, eastern outside slope of great lagoon, Dongsha Atoll (Pratas Islands), South China Sea, Taiwan.

Diagnosis.
This species can be well distinguished from other congeners by the following combination of features:
Table 1. Morphometry of three newly recorded gobiid fishes in Dongsha Atoll, South China Sea.

<table>
<thead>
<tr>
<th></th>
<th>Feia nympha</th>
<th>Sueviota lachneri</th>
<th>Trimmatom nanus</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of specimen(s)</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Standard length (SL)</td>
<td>14.3 mm</td>
<td>13.6-16.2 mm</td>
<td>7.1-8.7 mm</td>
</tr>
<tr>
<td>% in SL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head length</td>
<td>30.4</td>
<td>30.3-31.2 (30.8)</td>
<td>27.7-29.9 (28.7)</td>
</tr>
<tr>
<td>Predorsal length</td>
<td>42.0</td>
<td>37.7-38.3 (38.0)</td>
<td>42.5-44.1 (43.6)</td>
</tr>
<tr>
<td>Snout to 2nd dorsal length</td>
<td>62.4</td>
<td>59.4-61.2 (60.1)</td>
<td>61.4-63.1 (62.3)</td>
</tr>
<tr>
<td>Snout to anus</td>
<td>62.1</td>
<td>57.0-60.7 (58.8)</td>
<td>57.7-61.1 (59.2)</td>
</tr>
<tr>
<td>Snout to anal fin origin</td>
<td>68.8</td>
<td>63.9-65.7 (65.0)</td>
<td>61.2-64.4 (62.7)</td>
</tr>
<tr>
<td>Prepelvic length</td>
<td>30.2</td>
<td>30.6-32.1 (31.5)</td>
<td>28.5-32.4 (30.2)</td>
</tr>
<tr>
<td>Caudal peduncle length</td>
<td>13.8</td>
<td>16.5-20.9 (18.9)</td>
<td>13.4-16.0 (14.6)</td>
</tr>
<tr>
<td>Caudal peduncle depth</td>
<td>13.4</td>
<td>13.0-13.3 (13.2)</td>
<td>11.3-12.4 (11.8)</td>
</tr>
<tr>
<td>1st dorsal fin base</td>
<td>16.0</td>
<td>17.1-19.1 (18.0)</td>
<td>17.6-19.2 (18.7)</td>
</tr>
<tr>
<td>2nd dorsal fin base</td>
<td>24.6</td>
<td>22.7-26.0 (24.5)</td>
<td>24.7-30.0 (27.5)</td>
</tr>
<tr>
<td>Anal fin base</td>
<td>20.4</td>
<td>18.3-20.1 (19.2)</td>
<td>18.8-23.5 (22.1)</td>
</tr>
<tr>
<td>Caudal fin length</td>
<td>37.4</td>
<td>32.6-35.1 (33.8)</td>
<td>27.8-30.7 (28.7)</td>
</tr>
<tr>
<td>Pectoral fin length</td>
<td>28.8</td>
<td>29.1-36.2 (32.8)</td>
<td>21.1-28.2 (25.0)</td>
</tr>
<tr>
<td>Pelvic fin length</td>
<td>20.7</td>
<td>32.1-35.6 (34.4)</td>
<td>36.7-39.9 (37.7)</td>
</tr>
<tr>
<td>Body depth at pelvic fin origin</td>
<td>14.0</td>
<td>19.7-21.8 (20.8)</td>
<td>17.6-23.6 (19.2)</td>
</tr>
<tr>
<td>Body depth at anal fin origin</td>
<td>15.7</td>
<td>18.1-19.9 (18.9)</td>
<td>14.3-17.9 (15.7)</td>
</tr>
<tr>
<td>Body width at anal fin origin</td>
<td>10.7</td>
<td>8.7-9.5 (9.1)</td>
<td>7.3-9.0 (8.1)</td>
</tr>
<tr>
<td>Pelvic fin origin to anus</td>
<td>31.4</td>
<td>28.3-31.6 (29.9)</td>
<td>28.0-31.5 (30.1)</td>
</tr>
<tr>
<td>% in HL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snout length</td>
<td>32.0</td>
<td>25.1-25.7 (25.4)</td>
<td>20.8-22.8 (22.2)</td>
</tr>
<tr>
<td>Eye diameter</td>
<td>17.5</td>
<td>28.0-30.8 (29.8)</td>
<td>35.7-39.1 (37.0)</td>
</tr>
<tr>
<td>Cheek depth</td>
<td>31.1</td>
<td>32.2-35.1 (33.3)</td>
<td>31.5-35.0 (32.8)</td>
</tr>
<tr>
<td>Postorbital length</td>
<td>63.4</td>
<td>61.2-64.3 (62.4)</td>
<td>54.9-61.9 (57.6)</td>
</tr>
<tr>
<td>Head width at maximum</td>
<td>69.1</td>
<td>57.5-60.2 (59.3)</td>
<td>50.6-58.4 (53.7)</td>
</tr>
<tr>
<td>Head width at upper gill-opening</td>
<td>45.9</td>
<td>34.7-38.8 (36.3)</td>
<td></td>
</tr>
<tr>
<td>Bony interorbital width</td>
<td>10.6</td>
<td>2.3-3.1 (2.8)</td>
<td></td>
</tr>
<tr>
<td>Fleshy interorbital width</td>
<td>23.3</td>
<td>11.7-14.5 (13.3)</td>
<td>8.0-11.8 (9.6)</td>
</tr>
<tr>
<td>Lower jaw length</td>
<td>43.5</td>
<td>44.0-48.2 (46.2)</td>
<td>42.1-49.1 (46.4)</td>
</tr>
</tbody>
</table>

(1) Fin rays: D1 VI; D2 I/9; A I/9; P 16; V I/5.
(2) Squamation: LR 0; PreD 0. Entire head and body naked.
(3) Gill-opening: Rather wide, extending ventrally forward to vertical line slightly beyond preopercle.
(4) Body proportion: All morphometric data shown in Table 1.

Distribution:
Indo-West Pacific, including the Red Sea. This species was first found in Dongsha Atoll, South China Sea. However, it has not yet been found in Taiwanese waters.

Remarks:
This species is still one of the smallest, benthic, coral-reef associated fishes in the world (Winterbottom and Emery [22]). Our specimens collected here provide the northernmost record of this species.

ACKNOWLEDGMENTS
The authors wish to thank the government research grant support from the National Science Council, Taiwan and also Marine National Park Headquarters, which is responsible for the management of Dongsha Atoll National Park. We are also
very grateful to the Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University for the kind partial grant support for gobiod research in the South China Sea.

REFERENCES

