Neobythites longipes Smith & Radcliffe, 1913
(Pisces: Ophidiidae), a New Record from the
Waters Adjacent to Taiwan

Hsin-Ming Yeh, Mao-Ying Lee and Kwang-Tsao Shao

長新鼬鳚-台灣新紀錄種鼬鳚科魚類

葉信明・李茂熾・邵廣昭

臺灣水産學會刊
第三十三卷 第四期 拆印本
中華民國九十五年十二月
Reprinted from
Journal of the Fisheries Society of Taiwan
Vol. 33, No. 4, December 2006
Neobytites longipes Smith & Radcliffe, 1913 (Pisces: Ophidiidae), a New Record from the Waters Adjacent to Taiwan

Hsin-Ming Yeh¹,², Mao-Ying Lee¹ and Kwang-Tsao Shao*¹

(Received, October 17, 2006; Accepted, December 30, 2006)

ABSTRACT

Five specimens of Neobytites longipes Smith & Radcliffe in Radcliffe, 1913, a new record of ophidiid fish, were collected by the chartered commercial bottom trawler and the R/V ‘Ocean Researcher III’ from 300-457 meter depth off southwestern Taiwan during August 2005-March 2006. Thus, the total number of ophidiids in the waters adjacent to Taiwan is 17 genera and 27 species. Our specimens are the first record of N. longipes trawled from the South China Sea, and the northern distribution of N. longipes is extended from 6°2′N to 22°24′N. This paper includes diagnostic characters and geographical distribution of N. longipes. A color photo, station data, and a key to the species are also given.

Key words: Neobytites longipes, Ophidiidae, New record, Deep-Sea fish, Taiwan.

INTRODUCTION

Neobytites Goode & Bean, 1885 is the largest genus in the oviparous family Ophidiidae, and is known from all oceans except for the eastern Atlantic Ocean. Fifty species are recognized in the genus. Besides the eight endemic species in the western Atlantic Ocean, 42 species occur in the Indo-Pacific, where are collected from 67-950 meters of depth near the bottom (Nielsen, 1995; Nielsen, 1997; Nielsen, 1999a; Nielsen, 2002). Three species, N. sivicola (Jordan and Snyder, 1901), N. stigmosus Machida, 1984, and N. unimaculatus Smith and Radcliffe in Radcliffe, 1913, are recorded from Japanese waters (Nakabo, 2002; Nielsen, 2002). In the adjacent waters of Taiwan, Machida (1984) collected N. sivicola and N. stigmosus from the Okinawa Trough, however from the same area Xu and Wang (1988) found no species of Neobytites. Randall and Lim (2000) compiled a checklist of fishes in the South China Sea, including four Neobytites species, N. fasciatus Smith and Radcliffe in Radcliffe, 1913, N. sivicola, N. stigmosus, and N. unimaculatus.

In Taiwan, Nielsen (2002) listed three Neobytites species, namely, N. sivicola, N. stigmosus, and N. unimaculatus. Recently Yeh et al. (2005) reviewed ophidiid fishes from waters around and recognized the fourth species, N. fasciatus.

In this paper, we report five specimens of Neobytites longipes, a new record of ophidiid fishes to Taiwan totalling the number of ophidiids from Taiwan to 17 genera and 27 species. This paper includes diagnostic characters and geographical distribution of N. longipes. A color photo, station data, and a key to the species are also given.

MATERIALS AND METHODS

One specimen (ASIZP 66713) was caught by the CT3-class commercial otter

¹ Research Center for Biodiversity, Academia Sinica, Taipei 115, Taiwan
² Coastal and Offshore Resources Research Center, Fisheries Research Institute, Kaohsiung 80672, Taiwan
* Corresponding author. E-mail: zoskt@gate.sinica.edu.tw
trawler (SN: CT3-5692) under the bottom trawl project of the Council of Agriculture, and four specimens by the R/V 'Ocean Researcher III' under the project of Deep-Sea Biodiversity II (August 2004 – July 2007) of the National Science Council. Each tow usually lasted for one hour except abnormal high tension of wire during trawl operation. The towing speed of commercial otter trawl was kept between 1.4 and 2.2 knot, and that of beam trawl was between 1.0 and 1.5 knot by the ground speed. The construction of the commercial otter trawl had been well documented by Chow and Su (2002). The construction and operation of the French type beam trawl had also been described (Yeh et al., 2005).

All samples were sorted on board to main taxa. Fishes were then preserved in -20°C deep freezer on the vessels and temporarily stored in the laboratory. After defrost for examination, digital images of specimens were taken for each specimen. Morphometric characters and weight of specimens were measured and recorded in millimeters and milligrams, respectively. The numbers of vertebrae, dorsal-fin, anal-fin and caudal-fin rays were counted from radiographs. Methods for taking counts and measurement followed Nielsen et al. (1999) and Nielsen (2002). Counts and measurements from this study were in parenthesis. Then specimens were fixed in 10% neutralized formalin for more than 4 weeks. After the fixation, the samples were rinsed with tap water, and then preserved in 70% alcohol permanently and deposited at the museum of Research Center for Biodiversity, Academia Sinica (RCBAS) with the catalog number of ASIZP. Fish names in Chinese were based on Latin-Chinese dictionary of fishes names (Wu et al., 1999).

Abbreviations: SL, standard length; HL, head length.

RESULTS

Table 1 lists the sampling information of the stations where Neobythites longipes was collected. For synonyms see Nielsen et al. (1999).

Key to the species of Ophidiidae occurring in the adjacent waters of Taiwan
1a. Barbels present on snout or chin..............

Brotula multibarba
1b. No barbels present on snout or chin........2

2a. Main body of ventral arm of cleithrum meeting its mate at about level of preopercle, but a slender, elongate filament of bone extending anteriorly to pelvic fins and inserted beneath eye...

Ophidion muraenolepis
2b. Ventral arm of cleithrum meeting its mate and terminating at about level of preopercle or farther anteriorly; anteriorly directed bony filament absent..................3

3a. Pelvic fins below or slightly behind eye.4
3b. Pelvic fins below preopercle or absent.7

4a. Pelvic fin with a single ray; no spines on preopercle............Sirembo imberbis
4b. Pelvic fin with 2 rays; spines variously developed on preopercle........5

5a. Spine on opercle short, hardly extending beyond rear margin of head; snout spine long, sharp and strong..............Hoplobrotula armata
5b. Spine on opercle long, extending well beyond rear margin of head........6

6a. Bifid spine prominent protruding on tip of snout; body slender............Acanthonus armatus
6b. No spine on snout; body robust...........Xyelacyba myersi

7a. Long gill rakers four or fewer, on anterior gill arch................Luciobrotula bartschi
7b. Long gill rakers five or more, on anterior gill arch........................8

8a. More than ten pairs of spines on head.9
8b. Head without spines.....................10

9a. Lachrymal with two to three spines........Porogadus guentheri
9b. Lachrymal with five to seven spines...............Porogadus miles

10a. Lateral line covered with small scales, beneath which lie vertically oriented, spindle-shape neuromasts, each of which is mounted on a large, vertically elongate scale......................Lamprognathus brunswigi
10b. Lateral line not as above................11

11a. Opercular spine absent or weak, if
Table 1. Information for Trawl Stations

<table>
<thead>
<tr>
<th>Station</th>
<th>Vessel</th>
<th>Date</th>
<th>Place</th>
<th>Time of Operation</th>
<th>Start to Trawl</th>
<th>Start to Retrieve</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fish trawler</td>
<td>2005/8/24</td>
<td>off Donggang, SW Taiwan</td>
<td>05:02-06:06</td>
<td>22°13.106' N</td>
<td>120°28.988' E</td>
<td>22°13.263' N</td>
</tr>
</tbody>
</table>

*: otter trawl; PCP: French type beam trawl of 3 m span
present rather broad, flattened and flap-like and incorporated in opercular bone.12
11b. Opercular spine strong and narrow, sometimes hidden, usually rounded in cross-section.17
12a. Eye diameter equal to or greater than snout.Glyptophidium lucidum
12b. Eye diameter less than snout.13
13a. Lower pectoral fin rays free, prolonged or fin dividedBathyonus caudalis
13b. Lower pectoral fin rays normal and fin not divided14
14a. Ventral fin rays less than about 3% of SL; long gill rakers 17-22Bassozetus multispinis
14b. Ventral fin rays more than 5% of SL; long gill rakers 11-2115
15a. Scale large (less than 25 in oblique row)Bassozetus compressus
15b. Scale small (more than 25 in oblique row)16
16a. Sagittal otolith large; long gill rakers 11-16Bassozetus robustus
16b. Sagittal otolith small; long gill rakers 15-21Bassozetus glutinosus
17a. Pectoral fins with lower rays free; pelvic fins with two rays in each18
17b. Pectoral fins entire; pelvic fins with one or two rays in each20
18a. Eye diameter much less than 1/2 snout length; pelvic fin rays flattenedHolcomycterous aequatoris
18b. Eye diameter equal to 1/2 or more of snout length; pelvic fin rays filamentous19
19a. Two median and a pair of basibranchial tooth patches; two pelvic fin raysDicroleone tristis
19b. One median and a pair of basibranchial tooth patches; one pelvic fin rayDicroleone quinquarius
20a. Median basibranchial tooth patch one21
20b. Median basibranchial tooth patches two23
21a. Pelvic fins longer than head; pectoral fins placed closer to ventral edge than to midlineHomostolus acer
21b. Pelvic fins not longer than head; pectoral fins placed closer to midline than to ventral edge22
22a. Teeth in outer series on both jaws enlargedMonomitopus pallidus
22b. No teeth on either jaw enlargedMonomitopus kumae
23a. Pelvic fins extending beyond anusNeobythites longipes
23b. Pelvic fins not extending beyond anus24
24a. Dorsal fin with ocelli or dark blotches25
24b. Dorsal fin without ocelli or dark blotchesNeobythites sivicola
25a. Dorsal fin with one ocellus; anal fin without ocelliNeobythites unimaculatus
25b. Dorsal fin with three or more ocelli; anal fin with two to four ocelli or blotches26
26a. Anterior gill arch with eight to ten long rakers; anal fin with three to four distinct blotches; body with distinct, dark, vertical barsNeobythites fasciatus
26b. Anterior gill arch with 11-12 long rakers; anal fin with two to four distinct ocelli; body with or without distinct, dark, vertical barsNeobythites stigmosus

SPECIES ACCOUNTS

Neobythites Goode & Bean, 1885

Neobythites longipes Smith & Radcliffe, 1913

Fig. 1, Pl. 1

Specimens examined (5 specimens, SL 145-211): ASIZP 66713, 1 specimen, SL 155, stn. 5T300Aug; ASIZP 66918, 3 specimens, SL 145-152, stn. PCP347; ASIZP 66923, 1 specimen, SL 211, stn. PCP348.

Description:
Snout pointed and slightly longer than diameter of eye window; mouth subterminal; maxilla ends well behind eye; teeth granular; vomer tooth patch boomerang shaped; one large ocellus on dorsal fin; distal part
of anal fin black; pelvic fins reaching to or well beyond anus; opercular spine straight; hind margin of preopercle without spines; 2 median basibranchial tooth patch; dorsal fin rays 96-103 (103-106); caudal fin rays 8 (8); anal fin rays 79-86 (83-87); pectoral fin rays 27-30 (27-29); pelvic fin rays (2+2); pseudobranchial filaments 5-10 (6-8); precaudal vertebrae 13-14 (14); total vertebrae 57-60 (58-60); long rakers on anterior gill arch 8-10 (2+1+5-6); anterior dorsal ray above vertebra number 5-6 (5); anterior anal ray below dorsal ray number 19-22 (20-22); anterior anal ray below vertebrae number 15-17 (15-16); pelvic fins with 2 rays in each; length of head 22.5-25.5 (21.9-23.0)% SL; depth at origin of anal ray 13.5-17.5 (13.6-15.2)% SL; upper jaw 12.0-13.5 (11.6-12.4)% SL; horizontal eye window 3.9-5.0 (3.8-4.5)% SL; postorbital 12.5-
Pl. 1. *Neobythites longipes*, ASIZP 66923, SL 211 mm.

15.5 (12.9-13.8)% SL; preanal 41.0-48.5 (39.3-41.3)% SL; predorsal 23.0-28.5 (23.5-25.8)% SL; from base of ventral fins to anal fin 23.5-30.5 (22.1-25.3)% SL; ventral fin 28.5-54.0 (28.3-32.3)% SL; snout to 1st ocellus 40.5-53.0 (43.2-46.7)% SL; Longest filaments on anterior gill arch 5.7-11.0 (8.3-9.4)% HL.

Distribution:

Indo-West Pacific: off southwestern Taiwan, Philippines, and off western Australia; bentholopelic at bathyal depth (150-481 m).

Remarks:

Neobythites longipes was known from 16 localities between 6°2'N and 18°46'S of the western Pacific Ocean (Nielsen, 2002). Our paper extends its northern range to 22°24' N, and it is the first record of *N. longipes* from the South China Sea. Our material differs from the Philippine and Australian specimens described by Nielsen (2002) in the counts of dorsal fins rays (103-106 vs. 96-103).

ACKNOWLEDGEMENTS

We thank the financial support of the National Science Council by the DeepSea Biodiversity Project (NSC 95-2621-B-001-004), and the budget funded by Council of Agriculture for the Bottom Trawl Project (94AS-14.1.1-FA-F1). We also appreciate the captain and crews of R/V 'Ocean Researcher III' for their helps and assistance on board. Mr. Cheng-Yi Tsai who kindly took photos and treated samples, and the members of the Laboratory of Fish Ecology and Evolution, Research Center for Biodiversity, Academia Sinica participated in the projects in all sorts of different ways.

REFERENCES

Nielsen, J. G. (1999a). Atlantic occurrence of the

長新鼬鱸 - 台灣新紀錄種鼬鱸科魚類

葉信明1,2 • 李茂熾1 • 邵廣昭1*

(2006年10月17日收件；2006年12月30日接受)

本研究記載自2005年8月至2006年3月在台灣深海海域內水深300-457 m，使用底拖漁船和海研三號所採集到5個體的台灣新紀錄種鼬鱸科魚類 - Neobytmites longipes Smith and Radcliffe, 1913 長新鼬鱸。總計台灣目前共有17屬27種鼬鱸科魚類。本研究為長新鼬鱸在南中國海的首次採集記錄並更新長新鼬鱸的採集北限由北緯6度2分至北緯22度24分。本研究除描述此新記錄種之形態特徵及地理分布外並附上其標本照和採集測站資料，同時亦提供台灣鼬鱸科魚類新的檢索表。

關鍵詞：長新鼬鱸，鼬鱸科，新紀錄，深海魚，台灣。

1 中央研究院生物多樣性研究中心
2 行政院農業委員會水產試驗所沿近海資源研究中心
* 通訊作者